✨Welcome to My Blog!✨
Welcome to My Blog! Welcome to my blog! I’m a computer science student in Germany, and this is where I document what I learn each day. Follow along as I build a record of my studies and discoveries.
Welcome to My Blog! Welcome to my blog! I’m a computer science student in Germany, and this is where I document what I learn each day. Follow along as I build a record of my studies and discoveries.
Trie & Segment Tree (트라이 & 세그먼트 트리) 10.1 Trie Definition / 정의: Tree structure for storing strings. / 문자열 저장을 위한 트리 구조. Properties: Root represents empty string. / 루트는 빈 문자...
Shortest Paths (최단 경로) 3.1 Dijkstra’s Algorithm Scope: Single Source Shortest Path (SSSP) for graphs with non-negative weights. / 음이 아닌 가중치 그래프의 단일 출발지 최단 경로 (SSSP). Idea: Use priority queue...
Projective Geometry (사영 기하학) 11.1 Projective Plane Definition / 정의: $\mathbb{P}^2 = (\mathbb{R}^3 \setminus {0}) / \sim$ where $(x,y,z) \sim \lambda(x,y,z)$ for $\lambda \neq 0$. / $\mathbb{P}...
Oral Exam Preparation 1. Problem-Solving Strategies (문제 해결 전략) General Approach (일반적인 접근법) Understand the problem: Read constraints, identify what’s being asked Identify pattern: Is it grap...
Number Theory (정수론) 8.1 GCD & LCM GCD (Greatest Common Divisor) / GCD (최대공약수): $gcd(a,b) = \max{k : k a \land k b}$. / $gcd(a,b) = \max{...
Maximum Flow (최대 유량) 4.1 Flow Network Definition: Directed graph $(V,E)$ with capacity function $c: E \to \mathbb{R}{\ge 0}$, source $s$, sink $t$. / 용량 함수 $c: E \to \mathbb{R}{\ge 0}$, 출발지 $s...
Greedy & Approximation (탐욕법 & 근사 알고리즘) 6.1 Greedy Algorithms Paradigm / 패러다임: Make locally optimal choices, never reconsider. / 지역적으로 최적 선택, 재고려하지 않음. Pros / 장점: Simple, fast, good h...
Graph Algorithms (그래프 알고리즘) 2.1 Graph Representations Adjacency List: For each vertex, store list of neighbors. Preferred for sparse graphs. / 각 정점에 대해 이웃 리스트 저장. 희소 그래프에 적합. Adjacency Matri...
Geometry (기하학) 9.1 Linear Algebra Basics Vectors / 벡터: Elements of $\mathbb{R}^n$. / $\mathbb{R}^n$의 원소. Dot Product / 내적: $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$. $x, y$ ...